Privacy protection for telecare medicine information systems using a chaotic map-based three-factor authenticated key agreement scheme

L.P. Zhang, S.H. Zhu, S. Tang*, Senior Member, IEEE

Abstract—Telecare Medicine Information Systems (TMIS) provides flexible and convenient e-health care. However, the medical records transmitted in TMIS are exposed to unsecured public networks, so TMIS are more vulnerable to various types of security threats and attacks. To provide privacy protection for TMIS, a secure and efficient authenticated key agreement scheme is urgently needed to protect the sensitive medical data. Recently, Mishra et al. proposed a biometrics-based authenticated key agreement scheme for TMIS by using hash function and nonce, they claimed that their scheme could eliminate the security weaknesses of Yan et al.'s scheme and provide dynamic identity protection and user anonymity. In this paper, however, we demonstrate that Mishra et al.'s scheme suffers from replay attacks, man-in-the-middle attacks and fails to provide perfect forward secrecy. To overcome the weaknesses of Mishra et al.’s scheme, we then propose a three-factor authenticated key agreement scheme to enable the patient enjoy the remote healthcare services via TMIS with privacy protection. The chaotic map-based cryptography is employed in the proposed scheme to achieve a delicate balance of security and performance. Security analysis demonstrates that the proposed scheme resists various attacks and provides several attractive security properties. Performance evaluation shows that the proposed scheme increases efficiency in comparison with other related schemes.

Index Terms—Telecare medicine information systems; Privacy protection; Authenticated key agreement; Chaotic maps; Security

I. INTRODUCTION

Advances in information technology and environmental concerns boost the rapid development of Electronic Medical Record/Electronic Health Record (EHR) systems, which collect, store, manage and share patient’s healthcare associated information. Compared with traditional paper-based method, EMR/EHR provides low cost, high quality and more flexible medical records [1]. Owing to this transmission, Telecare Medicine Information Systems (TMIS) have been deployed to provide healthcare delivery services by accessing EMR/EHR via the public network like Internet [2]. In a typical medical application scenario of TMIS as shown in Fig. 1, patients submit their healthcare data to a telecare server via wired/wireless medical devices in their home. After receiving the patient’s medical records, the doctors perform the diagnosis at their clinical center and then transform the final clinical decisions and treatments to the patients through the Internet. Since the TMIS realizes convenient and efficient healthcare beyond the limitation of geographical distance, it attracts great attention and spreads into the market quickly [3-6].

![Fig. 1 Typical medical application scenario of TMIS.](image)

However, the sensitive medical records transmitted over the Internet are not protected in most TMIS environments, and various attacks could be launched successfully by malicious adversaries. To protect patient’s medical records, TMIS based healthcare should satisfy fundamental security and privacy requirements such as authentication, confidentiality, integrity, and user anonymity [7, 8]. As the authentication mechanism can prevent the medical resources from being accessed by malicious attackers and the session key used to encrypt the packets can ensure the confidentiality of EMR/HER, many authenticated key agreement schemes [9-13] have been developed to protect medical records security and preserve patient’s privacy. For example, the authentication schemes for HIPAA privacy and security regulations [9-11] were proposed to provide authorization, authentication and key management. The software solution [12] for sharing and querying of HL7 version 3 clinical documents was presented to provide security for data providers and protect the patients’ privacy.

Recently, passwords and smartcards based authenticated key agreement schemes have been studied widely for TMIS [14-19]. However, these schemes have some limitations. Firstly, both smartcards and passwords could be forgotten, lost, stolen or duplicated. Secondly, if the authorized users share their smart cards and passwords with unauthorized users, there is no way
for the system to tell who the actual user is. Thirdly, some of these schemes [14-15] require the server to maintain a password table for verification purposes, making them suffer from some possible attacks such as password disclosure attacks, stolen-verifier attacks and server-spoofing attacks. Besides, user’s passwords are potentially vulnerable to offline password guessing attacks since their entropy are usually very low. To enhance the security, biometric characteristics are employed as a third factor to design a strong authentication scheme. Since the combination of the three factors can resist guess, forget, stolen, and duplicate issues [20], the three factors-based authentication schemes overcome the weaknesses existing in two-factor schemes. As the three factors provide many attractive properties, several three-factor authentication and key agreement schemes have been proposed for TMIS [21-28].

In order to design a three-factor authenticated key agreement scheme, several cryptographic algorithms were employed such as one-way hash function, Chaotic maps, Elliptic Curve Cryptography (ECC), RSA cryptosystem and some other operations like XOR and concatenate etc. Compared with RSA, ECC offers equivalent security with smaller key sizes which implies lower power, bandwidth, and computational requirements [29-31]. In addition, the chaotic map operation is more efficient than ECC and RSA in terms of computation [32-36], so it is more suitable for designing a mutual authentication scheme.

By deploying symmetric key encryption technique and hash function, Awasthi and Srivatava [21] proposed a lightweight three-factor authenticated key agreement scheme for TMIS. Although their design is efficient, several security drawbacks were identified by Mishra et al. [22] and Tan [23]. Mishra et al. pointed out that Awasthi and Srivatava’s scheme could not resist password guessing attacks. Besides, their scheme failed to detect the wrong input in password change phase, and this failure might cause denial-of-service attacks in future login phase. Tan demonstrated that Awasthi and Srivatava’s scheme was vulnerable to reflection attacks and did not achieve user anonymity and three-factor security. To tackle these problems, Tan presented an improved scheme. However, later analysis [24] showed that Tan’s scheme suffered from replay attacks and denial-of-service attacks. To overcome the weaknesses, Yan et al. [25] proposed a new scheme and claimed that their scheme was secure against various attacks. Nevertheless, Mishra et al. [26] argued that Yan et al.’s design was vulnerable to offline password guessing attacks, and failed to provide efficient login and password updating as well as user anonymity. And then, they presented an authentication scheme by using the hash function and nonce to enhance the security. Recently, Mrudula et al.’s [27] pointed out that Mishra et al.’s scheme [26] was insecure against the offline identity guessing attack and the user impersonation attack. Amin and Biswas [28] argued that Mishra et al.’s scheme [26] could not withstand the server impersonation attack, the session key computation attack and the smart card theft attack. In this paper, we demonstrated that Mishra et al. scheme [26] could not resist the replay attack and the man-in-the-middle attack, and failed to provide perfect forward secrecy.

To enhance the security while still preserve the efficiency of Mishra et al.’s scheme [26], in this study, we develop an improved authenticated key agreement scheme for TMIS which enables the patients to enjoy the remote healthcare services securely and anonymously. Although Amin et al. [28] presented an improvement scheme based on Mishra et al.’s scheme, their scheme suffered from the known session specific temporary information attack [37] and increase the computational costs. In order to achieve a delicate balance between performance and security, chaotic map-based cryptography [38] is employed in the proposed scheme. Since chaotic map operations possess the semi-group property, it is more efficient than modular exponential computation and point multiplication operations of elliptic curve [32-36, 39-40]. The proposed three factor authentication scheme not only achieves mutual authentication and key agreement by using Chebyshev chaotic map but also enhances the performance in comparison with other related schemes.

The rest of this paper is organized as follows. Section II briefly review Mishra et al.’s scheme [26]. Section III describes a cryptanalysis of Mishra et al.’s scheme [26]. Our authenticated key agreement scheme is presented in Section IV. In Section V, the security of the proposed scheme is discussed. The performance of the scheme is examined in Section VI, and the paper is concluded in Section VII.

II. REVIEW OF MISHRA ET AL.’S SCHEME

In this section, we briefly review Mishra et al.’s biometrics based authentication scheme [26]. Their scheme consists of five phases: registration phase, login phase, authentication phase, and password and biometrics update phase. The notations used throughout this paper are summarized in TABLE I.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Notations and Terminology</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Telecare server in TMIS</td>
</tr>
<tr>
<td>UI</td>
<td>Patients in TMIS</td>
</tr>
<tr>
<td>SC</td>
<td>Smart card</td>
</tr>
<tr>
<td>IDi</td>
<td>The identity of the patient Ui</td>
</tr>
<tr>
<td>PWi</td>
<td>The password of the patient Ui</td>
</tr>
<tr>
<td>Bi</td>
<td>The biometric data of the patient Ui</td>
</tr>
<tr>
<td>mk</td>
<td>The master key of the telecare server S</td>
</tr>
<tr>
<td>h(.)</td>
<td>Secure one-way hash function</td>
</tr>
<tr>
<td>H(.)</td>
<td>Secure Biohashing function</td>
</tr>
<tr>
<td>Ek(.)</td>
<td>Symmetric key encryption algorithm using k</td>
</tr>
<tr>
<td>Dk(.)</td>
<td>Symmetric key decryption algorithm using k</td>
</tr>
<tr>
<td>Tk(.)</td>
<td>Chebyshev chaotic map operation</td>
</tr>
<tr>
<td>Δ</td>
<td>Matching algorithm of biometrics</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>⊕</td>
<td>Exclusive-or operation</td>
</tr>
</tbody>
</table>

The rest of this paper is organized as follows. Section II briefly review Mishra et al.’s scheme [26]. Section III describes a cryptanalysis of Mishra et al.’s scheme [26]. Our authenticated key agreement scheme is presented in Section IV. In Section V, the security of the proposed scheme is discussed. The performance of the scheme is examined in Section VI, and the paper is concluded in Section VII.
A. Registration phase

When a patient \(U_i \) wants to register in the TMIS, it performs following steps with the telecare server \(S \) through a secure channel.

Step R1: the patient \(U_i \) selects its identity \(ID_i \), its password \(PW_i \) and a random number \(N_i \). Then it imprints its biometrics \(B_i \) via the sensor and computes \(W = h(ID_i \| PW_i \| N_i) \). Finally, \(U_i \) submits \((W, ID_i)\) to the telecare server \(S \).

Step R2: the telecare server \(S \) chooses a high entropy integer \(x \) as its private key. And then it computes \(X_i = h(ID_i \| x) \), \(Y_i = X_i \oplus W \), and generates \(U_i \)'s dynamic identity \(NID = E_x(ID_i \| R) \), where \(R \) is a random integer. Next, \(S \) stores \(\{NID, Y_i, h(.)\} \) into the smart card and submits it to \(U_i \).

Step R3: upon receiving the smart card, \(U_i \) computes \(N = N_i \oplus H(B_i) \) and \(V_i = h(ID_i \| PW_i \| N_i) \). Next it stores \((N, V_i)\) into the smart card and keep the smart card secretly.

B. Login phase

When a patient \(U_i \) accesses to the telecare server, it inserts its smart card into the card reader. And then the smart card and the telecare server execute the following steps:

Step L1: the patient \(U_i \) inputs \((ID_i, PW_i)\) and imprints its biometrics \(B_i \) via a sensor.

Step L2: the smart card computes \(N = N_i \oplus H(B_i) \) and verifies whether the equation \(V_i = h(ID_i \| PW_i \| N_i) \) holds. If it is invalid, the login session is rejected. Otherwise, the smart card computes \(W = h(ID_i \| PW_i \| N_i) \), \(X_i = Y_i \oplus W \) and generates \(r_i \) to obtain \(a_i = h(ID_i \| || r_i) \). At last, the smart card sends login message \(\{NID, a_i, r_i\} \) to the telecare server \(S \).

C. Authentication phase

Upon receiving the login message, the telecare server \(S \) and the patient \(U_i \) perform the following steps to achieve mutual authentication.

Step A1: the telecare server \(S \) retrieves \(ID_i \) by decrypting \(NID \) from the receiving message. Then it computes \(X_i = h(ID_i \| X_i \| || r_i) \) and verifies whether the equation \(a_i = h(ID_i \| X_i \| || r_i) \) holds. If the verification does not hold, \(S \) terminates the session. Otherwise, \(S \) generates two random integers \(r_s \) and \(R \) to compute the shared session key \(sk = h(ID_i \| || X_i \| || r_s \| || r_i) \), \(NID = E_{r_s}(ID_i \| || R) \) and \(h_i = h(ID_i \| || NID \| || sk \| || NID) \). Afterwards, \(S \) sends \(\{r_s, h_i, h(sk || ID_i) \oplus NID\} \) to the patient \(U_i \).

Step A2: after receiving the message, the smart card computes the shared session key \(sk = h(ID_i \| || X_i \| || r_s \| || r_i) \) and retrieves the \(U_i \)'s dynamic identity \(NID = h(sk || ID_i) \oplus h(sk || ID_i) \oplus NID \). Then, it verifies whether the result of \(h(ID_i \| || NID \| || sk \| || NID) \) is equal to the received message \(b_i \). If not, the smart card stops the session. Otherwise, the smart card computes \(c_i = h(ID_i \| || NID \| || sk) \) and sends \(c_i \) as the session key verification message to the telecare server \(S \).

Step A3: upon receiving the message \(c_i \), the telecare server \(S \) verifies whether the equation \(c_i = h(ID_i \| || NID \| || sk) \) holds. If not, it terminates the authentication session. Otherwise, \(U_i \) is authenticated, and the shared session key \(sk \) is valid.

D. Password and biometrics update phase

The patient can change its password and biometric without server assistance.

Step P1: the patient \(U_i \) inserts the smart card into the card reader and inputs its identity \(ID_i \) and its password \(PW_i \), and then imprints its biometrics \(B_i \) via a sensor.

Step P2: the smart card checks whether all the inputs are valid. If not, it stops the session. Otherwise, the smart card requires the patient to submit her/his new identity information.

Step P3: the patient \(U_i \) selects a new password \(PW_i' \), a new random number \(N_i' \), and imprints a new biometrics \(B_i' \).

Step P4: upon receiving the message, the smart card computes \(W = h(ID_i \| PW_i \| N_i) \), \(W_{new} = h(ID_i \| PW_i \| N_i') \), \(Y_{new} = Y_i \oplus W \oplus W_{new} \), \(V_{new} = h(ID_i \| PW_i \| N_i) \) and \(N_{new} = N \oplus H(B_i) \). Finally, the smart card replaces the old message \((Y_i, N_i, V_i)\) with the new identity information \((Y_{new}, N_{new}, V_{new})\).

III. CRYPTANALYSIS OF MISHRA ET AL.’S SCHEME

In this section, we describe our findings that the scheme of Mishra et al. [26] is vulnerable to the replay attack, the man-in-the-middle attack, and failed to provide perfect forward secrecy. Before that, an attacker model [41, 42] is defined as follows.

A. Attack model

1) The adversary can extract the values stored in the smartcard by some ways like monitoring their power consumption and reverse engineering techniques [43, 44].

2) The adversary can control the communication channel, that is, it may eavesdrop, intercept, modify, remove, and replay any message transmitted over the public channel.

3) The adversary may be a legitimate but malicious user or server in TMIS.

4) An attacker can guess a low entropy password and identity individually easily but guessing two secret parameters (e.g. password, identity) is computationally infeasible in polynomial time [45].

Under these assumptions, an attacker Eve can extract the information \(\{NID, Y_{i}, N, V_{i}\} \) from the smartcard, and record all the messages transmitted via the public channel. Then, the scheme cannot resist the offline identity guessing attack, the replay attack, the Man-in-the-middle attack and fails to provide perfect forward secrecy.

B. Suffer from the offline identity guessing attack

In this subsection, we review that Mishra et al.’s scheme suffers from offline identity guessing attacks which
demonstrated by Mrudula et al. [27]. And we also discuss why this attack can be easily launched.

Assume that the adversary Eve compromises the secret information \((NID, \ Y, \ N, \ V_i) \) stored in the smart card and eavesdrops previous login messages \((NID, \ a_i, \ r_i) \). In Mishra et al.’s scheme [26], since the secret information \(V_i = h(ID, \ \|PW, \ \|N_i) = W \), Eve can deduce that \(a_i = h(ID, \ \|X_i, \ \|r_i) = h(ID, \ \|Y_i \oplus V_i \| r_i) \). Then, she can launch the offline identity guessing attack to obtain the patient real identity. First, Eve guesses the value of \(ID \) from an identity directory space and then computes \(a_i' = h(ID', \ \|Y_i \oplus V_i \| r_i) \) where \(Y_i \) and \(V_i \) are stored in the smart card and \(r_i \) is eavesdropped from the public channel. Then, Eve compares the computed value \(a_i \) with the interpolated value \(a_i' \). If they are equal, Eve gets the correct identity of the patient \(U \). Otherwise, Eve selects another identity from the dictionary and tries it again until it finds the correct identity. Once the adversary successfully guesses the patient’s identity, she/he can frame and derive valuable messages of the patient. Therefore, Mishra et al.’s scheme [26] cannot achieve user anonymity and user traceability.

Since the identity guesses attack mentioned above do not need to interact with the telecare server, this attack is easy to launch. Suppose that the length of patient \(U \)'s identity space is \(|\pi_r| \) and the time complexity of this attack process is \(O(|\pi_r| \cdot T_h) \), here \(T_h \) denotes the time for operating a hash function. Since the function \(O(|\pi_r| \cdot T_h) \) is a linear function of \(U \)'s identity space, the identity guesses attack mentioned above is a lightweight attack.

C. Suffer from the replay attack

From above analysis, the attacker can obtain the valid identity by launching the offline identity guessing attack. Then, we demonstrate Mishra et al.’s scheme [26] suffers from replay attack using the compromised identity. Suppose an adversary Eve records the old login message and replays it to the telecare server \(S \). Then Eve can retrieve the new dynamic identity \(NID' \) from the receiving message \(\{r_i, \ h(ID, \ \|Y_i \oplus V_i \| r_i) \oplus NID' \} \) by using the computed session key \(sk' = h(ID, \ \|Y_i \oplus V_i \| r_i) \) via the compromised identity \(ID \), and the message \((Y_i, \ V_i) \) stored in the smart card. Consequently, Eve can construct a valid \(c_i = h(ID', \ \|NID' \| sk') \) to pass the verification of telecare server \(S \). Under this case, the adversary Eve could be authenticated as a legal patient by launching the replay attacks.

D. Suffer from the man-in-the-middle attack

Since the adversary Eve can impersonate a patient \(U \) to cheat the telecare server \(S \) [27], then she can share a session key with the telecare server \(S \) and makes it believes that the key is shared with the patient \(U \). On the other hand, Eve can also impersonate the telecare server \(S \) [28], so that she can convince the patient \(U \) to share a session key, making it believes that the key is shared with the telecare server \(S \). Therefore, Mishra et al.’s scheme [26] could not resist the man-in-the-middle attack.

E. No provision of perfect forward secrecy

In Mishra et al.’s scheme [26], once the telecare server’s long-term private key \(x \) is revealed, all the previous session keys would be compromised. Suppose that an adversary Eve has compromised the secret private key \(x \) and obtained previous messages. Then the adversary Eve intercepts the login messages \((NID, \ a_i, \ r_i) \) and obtains the patient \(U \)'s real identity by decrypting \(NID = E_r(ID, \ \|X_i) \) with the compromised private key \(x \). Next, Eve can compute \(X_i = h(ID, \ \|r_i) \) via the compromised identity \(ID \), and then she can computes the previous session keys \(sk = h(ID, \ \|X_i, \ \|r_i) \) by using the computed \(X_i \), the compromised identity \(ID \), and the intercepted message \((r_i, \ r_i) \).

Since the security of Mishra et al.’s scheme [26] is independent on some intractable mathematical problems, their session key could be broken when the telecare server \(S \)'s secret private key is revealed. Additionally, according to above analysis, the security of Mishra et al.’s scheme [26] entirely relies on the patient’s real identity. However, the patient’s identity can be leaked in various ways, so Mishra et al.’s scheme [26] could not provide a proper security at an acceptable level for TMIS in practice.

IV. OUR PROPOSED SCHEME

As demonstrated in Section V, Mishra et al.’s scheme [26] fails to achieve the claimed security goals since an adversary can perform a guessing attack to obtain the patient’s real identity and then she/he can launch various attacks successfully. In addition, their scheme could not provide perfect forward secrecy since the security of their scheme was independent on the intractable mathematical problems. In order to erase above security weaknesses, we present an improved authentication scheme by combining the three-factor authentication technology with the chaotic map-based cryptography.

Firstly, we review the basics of Chebyshev chaotic maps briefly. For more details, please refer to [46, 47].

Chebyshev polynomial \(T_n(x) : (-\infty, +\infty) \rightarrow [-1, 1] \) is defined as \(T_n(x) = (2xT_{n-1}(x) - T_{n-2}(x)) \mod p \), where \(x \in (-\infty, +\infty) \), \(n \) is an integer, \(n \geq 2, T_0(x) = 1, T_1(x) = x \), and \(p \) is a large prime number. The Chebyshev polynomial satisfies the semi-group property: \(T_{uv}(x) = T_u(T_v(x)) = T_v(T_u(x)) \), where \(u, v \in N \) and \(x \in (-\infty, +\infty) \).

Definition 1 Chaotic Map Discrete Logarithm problem (CMDLP): Given two elements \(y \) and \(x \), it is computationally infeasible to find an integer \(u \) such that \(T_u(x) = y \).

Definition 2 Chaotic Map Computational Diffie-Hellman problem (CMCDHP): Given \(x \), \(T_u(x), T_v(x) \), it is computationally infeasible to compute \(T_{uv}(x) = y \).

We assume that above two problems are intractable. That is, there is no polynomial time algorithm solving these problems with non-negligible probability.
Next, we describe the proposed chaotic map-based three factor authenticated key agreement scheme in detail. The proposed scheme consists five phases: initialization phase, registration phase, login phase, authentication phase, and password and biometrics update phase.

A. Initialization phase

In this phase, the telecare server \(S \) chooses a high entropy integer \(x \) randomly, a high entropy random integer \(mk \) as a master key, a secure one-way hash function \(h(.) \) and a symmetric key cryptosystem (such as AES-256) with the encryption algorithm \(E_k(.) \) and a decryption algorithm \(D_k(.) \).

B. Registration phase

This phase is executed for a patient who wants to be a legal user in TMIS. All the steps are performed between the patient \(U \) and the telecare server \(S \) via a secure channel. The detail of the registration phase described as follows and illustrated in Fig. 2.

Step R1: the patient \(U \) freely selects its identity \(ID_i \), its password \(PW_i \), and imprints its biometrics \(B_i \) via a sensor. Next, it generates a high entropy random integer \(N_i \), and then computes \(PB_i = B_i \oplus N_i \), \(W_i = ID_i \oplus PW_i \oplus PB_i \), \(V_i = h(ID_i \oplus PW_i \oplus N_i) \oplus PB_i \), where \(PB_i \) is used to protect the patient’s biometrics from being compromised in case of the smart card is lost or stolen. Finally, the patient \(U \) sends the registration request message \(\{ID_i, W_i\} \) to the telecare server \(S \).

Step R2: after receiving the message \(\{ID_i, W_i\} \), the telecare server \(S \) records \(ID_i \) into the identity table and then chooses a random integer \(R \) to generate \(U_i \) s dynamic identity \(NID = E_{mk}(ID_i \parallel R) \). Next, it computes \(X_i = h(ID_i \parallel mk) \), \(Y_i = X_i \oplus W_i \), and then writes \(\{NID, Y_i, h(.), x\} \) into the smart card. Finally, the telecare server \(S \) issues the smart card to the patient \(U \).

Step R3: upon receiving the smart card, the patient \(U \) stores the parameters \(\{Z_i, V_i\} \) into it secretly. Finally, the smart card contains \(\{NID, Y_i, Z_i, V_i, h(.), x\} \).

C. Login phase

In the login phase, the patient \(U \) performs following steps as shown in Fig. 3.

Step L1: the patient \(U \) inserts its smart card into the card reader and then it inputs its identity \(ID_i \) , its password \(PW_i \) and imprints its biometrics \(B_i \) via a sensor.

Step L2: the smart card computes \(N_i = V_i \oplus h(ID_i \oplus PW_i) \), \(PB_i = h(ID_i \oplus PW_i \oplus N_i) \oplus Z_i \) and \(PB_i^* = B_i \oplus N_i \). Then it compares \(PB_i^* \) with \(PB_i \). If the matching score \(\Delta(PB_i^*, PB_i) \) is beyond a predefined threshold value, the smart card terminates the login phase. Otherwise, it proceeds to next step.

Step L3: the smart card chooses a random integer \(u \), and then it computes \(T_u(x), W_u = ID_i \oplus PW_i \oplus PB_i \), \(X_u = Y_i \oplus W_i \), and \(\alpha = h(ID_i \parallel X_u \parallel T_u(x)) \). Next, it sends the login request message \(m_u = \{NID, \alpha, T_u(x)\} \) to the telecare server \(S \) over a public channel.

D. Authentication phase

After receiving the login message, the telecare server \(S \) and the smart card perform the following steps to achieve mutual authentication and key agreement as shown in Fig. 3.

Step A1: the telecare server \(S \) retrieves \(U_i \)'s original identity by decrypting \(NID \) via the master key \(mk \) and checks whether the extracted identity \(ID_i \) is valid according to the identity table. If not, \(S \) terminates the session. Otherwise, it computes \(X'_i = h(ID_i \parallel mk) \) and verifies whether the following equation holds \(\alpha = h(ID_i \parallel X'_i \parallel T_u(x)) \). If not, the process stops, otherwise \(S \) generates two random integers \(R' \) and \(s \) to generate a new dynamic identity \(NID' = E_{mk}(ID_i \parallel R') \). Then it calculates the shared session key \(sk = h(T_u(x)) \). Next, the telecare server \(S \) computes \(M = h(sk \parallel ID_i) \oplus NID' \) and \(b = h(ID_i \parallel sk \parallel NID') \) \(\parallel NID' \parallel NID \) and then it delivers \(m_2 = \{b, M, T_u(x)\} \) to the patient \(U \) via a public channel.

Step A2: after receiving the message \(m_2 \), the smart card

![Fig. 2 The pictorial representation of registration phase](image)

![Fig. 3 The pictorial representation of login and authentication phases](image)
computes $sk_m = h(T_c (T_c(x)))$ to retrieve the dynamic identity $NID' = M \oplus h(sk_k \| ID_f)$ and then checks whether the value of b_i is equivalent to $h(ID) \| sk_k \| NID' \| NID)$. If they are not equal, the smart card stops this session. Otherwise, the patient U_i believes that the telecare server S is a legal server and then it replaces the old NID by NID'. At last, the smart card computes $c_i = h(ID) \| sk_k \| NID')$ and submits $m_i = \{ c_i \}$ to the telecare server S via a public channel.

Step A3: upon receiving the message m_{ij}, the telecare server S computes $h(ID) \| sk_k \| NID'$ and checks if the result is equal to c_i. If the verification dissatisfies, it terminates this session, otherwise, the telecare server S believes that the patient U_i is a legal patient and sets the sk_k as their shared session key.

E. Password and biometrics update phase

This phase enables the legal patient U_i change its password and biometrics without communication with the telecare server S as shown in Fig. 4.

Step P1: the patient U_i inserts its smart card into the card reader. And then it inputs its identity ID_f, its password PW_i, and imprints its biometrics B_i' via a sensor.

Step P2: the smart card computes $N_i = V_i \oplus h(ID_i \oplus PW_i)$, $PB_i = h(ID_i \oplus PW_i \oplus N_i) \oplus Z_i$ and $PB'_i = B_i' \oplus N_i$. Then it compares PB'_i with PB_i. If the matching score $\Delta(PB'_i, PB_i)$ is beyond a predefined threshold value, the smart card rejects this request. Otherwise, the smart card returns the message (Request new password and biometrics) to the patient U_i.

Step P3: the patient U_i selects a new password PB^{new}_i, a new random integer N^{new}_i, and imprints a new biometrics B^{new}_i via a sensor.

Step P4: upon receiving the new parameters, the smart card computes $PB^{new}_i = B^{new}_i \oplus N^{new}_i$, $V^{new}_i = Y_i \oplus PW_i \oplus PW^{new}_i \oplus PB^{new}_i \oplus PB'_i$, $Z^{new}_i = h(ID_i \oplus PW^{new}_i \oplus N^{new}_i) \oplus PB^{new}_i$ and replaces the old parameters with $(V^{new}_i, V^{new}_i, Z^{new}_i)$, respectively.

V. Security Analysis

This section analyzes the security and functionality of our proposed scheme. Following the attack model defined in Section III, the adversary Eve can compromise the message $\{ NID, Y_i, Z_i, V_i, h(\cdot), x \}$ stored in the smart card and record all the messages transmitted between the patient and the telecare server. Detailed analysis is described in this section.

A. Replay attacks

Suppose that an adversary Eve records the login request message m_i and replays it to the telecare server S intending to impersonate the patient U_i. However, Eve cannot construct a valid $c_i = h(ID) \| sk_k \| NID')$ to pass the verification process of the telecare server S unless she can correctly guess the shared session key sk_k, the identity ID_i, and the new dynamic identity NID'. However, when Eve tries to compute the message sk_k by using the intercepted message $T_{(3)}$-previous intercepted message $T_{(3)}$ and the random integer x stored in the smart card, she will face the Chaotic Map Computational Diffie-Hellman problem (CMCDHP). In addition, Eve also cannot extract the sk_k from the obtained message b_i since sk_k is protected by a secure hash function. Moreover, the patient identity ID_i is protected by a secure one way hash function during the communication process, so the adversary Eve cannot extract ID_i from the intercepted message. Furthermore, Eve cannot compromise the new dynamic identity $NID' = E_{mk} (ID_i \| R)$ without the knowledge of patient identity ID_i, high entropy random integer R and the telecare server S’s master key mk. On the other hand, assume that the adversary Eve intercepts the login request message and replays a previous message m_2 to the patient U_i. For the same reason, the adversary cannot construct a valid session key b_i to pass the verification possess of patient U_i. So, the patient U_i will detect this replay attack easily by comparing the received b_i and its computed value $h(ID) \| sk_k \| NID' \| NID)$. Therefore, the proposed scheme can withstand the replay attack.

B. Modification attacks

Suppose that the adversary Eve modifies $T'_{(3)}(x)$ to $T''_{(3)}(x)$ and sends $\{ NID, a_i, T''_{(3)}(x) \}$ to the telecare server S to impersonate the patient U_i. However, S can detect this attack by checking whether or not $a_i = h(ID) \| X_i \| T'_{(3)}(x)$ holds. If the adversary Eve wants to pass the telecare server’s verification, she needs to construct a valid $a_i' = h(ID) \| X_i \| T''_{(3)}(x)$.

However, Eve cannot obtain X_i without the knowledge of the master key mk and the patient identity ID_i. In addition, she cannot calculate the valid X_i by using the message Y_i stored in the smart card without the knowledge of (ID_i, PW_i, PB_i).

Assume that an adversary Eve modifies the message $\{ b_i, M, T'_{(3)}(x) \}$ and sends it to the patient U_i. Similarly, Eve needs to construct a valid $b_i' = h(ID) \| sk_k \| NID' \| NID)$ to pass the verification of the patient U_i. For the same reason discussed in

Fig. 4 The pictorial representation of password and biometrics update phases
the subsection 6.1, the adversary Eve will face the Chaotic Map Computational Diffie-Hellman problem (CMCDHP).

If an adversary Eve forges the message c_i' and sends it to the telecare server S to impersonate the patient U_i, the telecare server S can find out that c_i' is not equivalent to its computed value, since Eve cannot correctly guess the value of sk, ID_i and NID. Therefore, the proposed scheme can resist the modification attack.

C. Man-in-the-middle attacks

In the proposed scheme, a session key sk can be shared only after mutual authentication between the patient U_i and the telecare server S. Therefore, if an adversary Eve attempts to make the telecare server S believes that it is talking to the patient U_i, she needs to pass the verification of S. However, for the same reason mentioned above, Eve cannot pass this process without the knowledge of patient’s ID_i and the secret value X_i. On the other hand, Eve also cannot construct a valid b_i to pass the patient’s verification without knowing the message (ID_i,sk,NID). So, the adversary cannot cheat the patient U_i to share a session key and make it believe that the key is shared with the telecare server S, and this judgment also works on S. Therefore, the adversary cannot launch the man-in-middle attack successfully to cheat either the patient or the telecare server in the proposed scheme.

D. Password guessing attacks with smart card

Assume that an adversary Eve compromises the message $\{NID, Y_i, Z_i, V_i, h(.,.) \}$ stored in the smart card and then tries to guess the patient’s password. However, Eve cannot correctly guess the password by using the compromised message V_i and $Z_i = h(ID_i \oplus PW_i \oplus N_i) \oplus PB_i = h(ID_i \oplus PW_i \oplus V_i \oplus h(ID_i \oplus PW_i)) \oplus B \oplus V_i \oplus h(ID_i \oplus PW_i)$, since the password is protected by the patient identity ID_i and the biometric data B_i. Without the privacy message of the patient, Eve cannot determine whether the guessed password is correct or not. In addition, Eve cannot guess the patient U_i’s password from $Y_i = X_i \oplus W_i = h(ID_i \oplus [mk]) \oplus ID_i \oplus PW_i \oplus PB_i$. Without the knowledge of ID_i, B_i and the master key mk, the adversary cannot launch the password guessing attacks with the smart card successfully in the proposed scheme.

E. Privileged-insider attacks

The proposed scheme can resist the privileged-insider attack. That is because in the registration phase, the patient U_i’s password is protected by its identity ID_i, its biometric data B_i and a high entropy random integer N_i. So a malicious privileged-insider in the telecare server cannot obtain the patient’s password during the registration phase.

F. Insider impersonation attacks

Assume that the patient U_A is a malicious patient who attempts to impersonate patient U_i to establish a session with the telecare server S. Since the patient U_A is a legal user, it can go through the login process successfully. First, the patient U_A use its privacy message to pass the verification and then it

U_A computes $a_A = h(ID_i \parallel X_i \parallel T_i(x))$ via patient U_i’s identity, and then sends message $\{NID_A, a_A, T_i(x)\}$ to the telecare server S. However this attack can be found easily, when the telecare server S checks the equation $a_A = h(ID_A \parallel X_A \parallel T_i(x)) \neq a_A$. That is because, the ID_i in the message a_A is patient U_i’s identity and the ID_A computed in the a_A is from U_A. So, the value of (ID_A, X_A) in a_A are not equal to the value of (ID_A, X_A) in the a_s respectively. Therefore, in the proposed scheme, a legal but malicious patient cannot impersonate other legitimate patient to access to the telecare server.

G. Stolen smart card attacks

Suppose that an adversary Eve compromises the secret message $\{NID, Y_i, Z_i, V_i, h(.,.) \}$ stored in the smart card and eavesdrops transmitted messages from the public network. In order to establish an authorized session with the telecare server S, Eve needs to generate a valid $a_i = h(ID_i \parallel X_i \parallel T_i(x))$ to pass the login verification. For the same reason discussed in the subsection A Replay attack, Eve cannot calculate a valid a_i without the knowledge of the master key mk and the patient identity ID_i or the message ID_i, PW_i and PB_i. Therefore, in the proposed scheme, even if an adversary had stolen the patient’s smart card, it could not login on the telecare server via the compromised message stored in the smart card.

H. Known Session Specific Temporary Information Attacks

If the session key depends only on the secrecy of randomly generated values, it may cause a known session specific temporary information attacks [37]. In our scheme, the session key was calculated by the identity, the secret value X_i and the randomly generated values (u, s) so the proposed scheme can withstand the known session specific temporary information attack.

I. Session key security

In the proposed scheme, only the patient U_i and the telecare server S can calculate the session key $sk = h(T_i(x)) = h(T_i(x))$ since the random integer u and s generated by the patient U_i and the telecare server S are different in every session. In addition, since the session key sk is protected by a secure one way hash function, the adversary cannot obtain it from the intercepted b_i or c_i. Furthermore, even if an adversary obtains the message $T_i(x)$ and $T_s(x)$ from the public channel, and then compromise the secret x from the smart card, she could not calculate the session key sk due to the hardness of CMDLP. Therefore, the proposed scheme achieves session key security.

J. Known-key security

An authentication scheme could provide known-key security if its execution could generate a unique session key and the compromise of this key has no impact on other session keys. In the proposed scheme, the session key $sk = h(T_i(x)) = h(T_i(x))$ is unique in each run of the authentication.
scheme. That because the random integer \(u \) and \(s \) are generated randomly and independently by the patient \(U_i \) and the telecare server \(S \) respectively. So, in the proposed scheme, the compromised session key has no impact on others session keys since the session keys are different in every session. Therefore, the proposed scheme can provide known-key security.

K. Perfect forward secrecy

An authentication scheme could provide perfect forward secrecy if the previous session keys cannot be compromised even both patient and telecare server’s secret keys are compromised. In the proposed scheme, the long-term secret key of the telecare \(S \) is the master key \(mk \), and that of the patient \(U_i \) is the password \(PW_i \) and the secret values \(\{ Y_i, Z_i, V_i, x \} \) stored in the smart card. Assume that all the secrets mentioned above are compromised by an adversary \(Eve \). When trying to calculate previous session key \(sk = h(T_i, T_i(x)) \) with the message \((T_i(x), T_i(x), x) \), Eve will face the Chaotic Map Computational Diffie-Hellman problem (CDHP). Therefore, without the knowledge of the high entropy random integer \(u \) and \(s \), the adversary \(Eve \) cannot figure out the previous session key. So, the proposed scheme can provide perfect forward secrecy.

L. User anonymity

An authentication scheme could provide user anonymity if there is no adversary can compromise the patient’s identity by launching active or passive attacks in every phase. In the proposed scheme, any adversary cannot compromise the patient’s identity by launching active or passive attacks in every phase. In the registration phase, the identity of the patient \(U_i \) is protected by its password, its biometric data and a high entropy random integer, so the adversary \(Eve \) cannot obtain the patient’s real identity. During the login and authentication phase, the patient’s real identity is protected by a secure one way hash function and a secure symmetric encryption algorithm. Since there are no message need to be transmitted in the password and biometric update phase, the adversary cannot obtain the patient’s real identity throughout updating process. Moreover, the adversary \(Eve \) cannot launch a guessing attack to obtain the patient \(U_i \)’s identity in the proposed scheme. That because, without the knowledge of \(X_i \), \(Eve \) cannot guess \(ID_i \) via \(a_i = h(ID_i \| X_i \| f_i(x)) \) successfully. So the adversary \(Eve \) cannot determine whether the guessed identity is correct or not. Similarly, \(Eve \) cannot obtain the correct identity by using the intercepted message \(b_i = h(ID_i \| sk_i \| NID \| NID) \) or \(c_i = h(ID_i \| sk_i \| NID^2) \), since she has no capability to calculate \(sk_i \) or \(sk_i \) from the message \((T_i(x), T_i(x), x) \) due to the hardness of CMDLP. Therefore, in the proposed scheme, nobody can know the real identity of the patient, except the patient himself and the telecare server.

M. User untraceability

In the proposed scheme, to further protect the patient’s real identity, the dynamic identity is changed by updating \(R \) during every session. Furthermore, the messages transmitted during the communication process in current session are also different with those of other session, since the random integer \(u \) and \(s \) are chosen randomly and differently in every session. Therefore, an adversary cannot distinguish whether two intercepted messages belong to the same patient or not. So, the proposed scheme provides the user untraceability.

N. Mutual authentication

In the proposed scheme, the telecare server \(S \) and the patient \(U_i \) can authenticate each other by checking \(c_i \) and \(b_i \), respectively. Therefore, the proposed scheme can achieve mutual authentication.

O. Efficient login phase

An authentication scheme achieves efficient login phase if the smart card can identify the incorrect input. In our scheme, assume that an adversary \(Eve \) compromise the patient \(U_i \)’s identity \(ID_i \) and its password \(PW_i \), and then it tries to login to the telecare server \(S \), this illegal login will be detect by comparing the value of \(PB_i^1 \) and \(PB_i^2 \). Without the knowledge of patient’s biometric data \(B_i \), the matching score of \(\Delta(PB_i^2, PB_i^1) \) will beyond a predefined threshold value. Then the smart card aborts the login session.

On the other hand, if the patient \(U_i \) inputs a wrong \(ID_i \) or \(PW_i \) by accident, the login session will be also terminated even the biometric data is correct. Since the message \(PB_i \) is constructed by patient’s biometric data \(B_i \) and a random integer \(N \) which can be calculate by secret \(V_i \), identity \(ID_i \) and password, \(PW_i \) the wrong input of password or identity will cause the matching score of \(\Delta(PB_i^2, PB_i^1) \) beyond a predefined threshold value. Consequently, the smart card will abort the login request. Therefore, the proposed scheme achieves efficient login phase.

P. User friendly and efficient password and biometrics changes phase

In the proposed scheme, the patient is allowed to change her/his password and biometrics freely without the telecare server’s assistance which makes the proposed scheme user-friendly. Since the smart card can verify the correctness of the input efficiently, a patient can change her/his password and biometrics correctly and efficiently.

Q. Biometrics protection

In the proposed scheme, the patient’s biometric data is protected by a high entropy random integer \(N \). So, even if the adversary obtains the smart card, she cannot retrieve the patient \(U_i \)’s biometric without the knowledge of the patient \(U_i \)’s identity \(ID_i \) and password \(PW_i \). Therefore, the proposed scheme provides the biometrics protection.

VI. SCHEME EVALUATION

In this section, we first compare the security attributes of our proposed scheme with Mishra et al.’s scheme [26], Amin et al.’s scheme [28], Xu et al.’s [16] scheme, and other chaotic map-based authentication and key agreement schemes such as Lee [34], Mishra [35]. TABLE II lists security attributes
Comparisons between our proposed scheme and other related schemes.

TABLE II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Replay attacks</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Smart card theft attacks</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Modification attacks</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Man-in-the-middle attacks</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Password guessing attacks</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Privileged-insider attacks</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Insider impersonation attacks</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Known session</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Denial of service attacks</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>User anonymity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>User untraceability</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mutual authentication</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Session key security</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Perfect forward secrecy</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Efficient login and password and biometrics change phase</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>User-friendly password change</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Biometrics protection</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

As shown in **TABLE II**, the proposed scheme is secure against various attacks while providing many attractive features such as user anonymity, perfect forward secrecy, efficient login and password updating, which have not been considered or provided by other related schemes. Although Amin and Biswas’s scheme [28] also fixed the limitations of Mishra et al.’s scheme [26], their scheme suffered from the known session specific temporary information attack. Furthermore, since Amin and Biswas’s scheme [28] do not provide biometrics protection, the adversary could retrieve the patient U_i’s biometric template directly through obtaining the smartcard.

Then, we compared the computational cost of our scheme with other relevant schemes as listed in **TABLE III**, where T_c, T_{th}, T_h, T_e, T_k, and T_t are the time complexity of the Chebyshev map operation, the Biohashing operation, the one-way hash operation, the scalar multiplication operation of elliptic curve, the point addition operation of elliptic curve, the symmetric key encryption/decryption operations, respectively. It is noted that the XOR operation is ignored because it’s running time is negligible.

TABLE III

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration</td>
<td>$T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$T_c+T_{th}+T_h+T_k+T_t$</td>
</tr>
<tr>
<td>Login</td>
<td>$2T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$3T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$3T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$3T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$3T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$3T_c+T_{th}+T_h+T_k+T_t$</td>
</tr>
<tr>
<td>Authentication</td>
<td>$3T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$3T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$3T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$3T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$3T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$3T_c+T_{th}+T_h+T_k+T_t$</td>
</tr>
<tr>
<td>Password & biometrics</td>
<td>$4T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$4T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$4T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$4T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$4T_c+T_{th}+T_h+T_k+T_t$</td>
<td>$4T_c+T_{th}+T_h+T_k+T_t$</td>
</tr>
<tr>
<td>Communication round</td>
<td>$19T_c$</td>
<td>$23T_c$</td>
<td>$14T_c$</td>
<td>$4T_c+3T_h+3T_k+17T_t+3T_e+20T_k+20T_t$</td>
<td>$4T_c+3T_h+3T_k+17T_t+3T_e+20T_k+20T_t$</td>
<td>$4T_c+3T_h+3T_k+17T_t+3T_e+20T_k+20T_t$</td>
</tr>
</tbody>
</table>

Compared with Chebyshev map and symmetric encryption/decryption operations, the time complexity for one-way hash operation is very lightweight. **TABLE III** shows that the computational overhead of our scheme is lower than Mishra et al.’s [35], Xu et al.’s [16] and Amin et al.’s [28] schemes. Although Lee [34] and Mishra et al.’s schemes [26] are efficient than our proposed scheme, their scheme is vulnerable to some malicious attacks. Furthermore, Mishra et al.’s scheme [26], Amin et al.’s scheme [28] and our proposed scheme require three times of message exchange to achieve mutual authentication and session key agreement while Xu et al.’s scheme [16] and other two chaotic map-based schemes [34, 35] need two times to finish mutual authentication and session key agreement. Furthermore, due to the usage of timestamps, these schemes will face the clock synchronization problem, which is difficult and expensive to be solved in TMIS environments [48]. Obviously, employing a timestamp mechanism to resist the replay attack is not suitable for TMIS. Therefore, the proposed scheme achieves a delicate balance between security and performance for TMIS in comparison with other related works.

TABLE IV

<table>
<thead>
<tr>
<th>scheme</th>
<th>Login phase</th>
<th>Authentication phase</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee [34]</td>
<td>800 bits</td>
<td>800 bits</td>
<td>1600 bits</td>
</tr>
<tr>
<td>Mishra et al.[35]</td>
<td>640 bits</td>
<td>320 bits</td>
<td>960 bits</td>
</tr>
<tr>
<td>Xu et al. [16]</td>
<td>800 bits</td>
<td>640 bits</td>
<td>1440 bits</td>
</tr>
<tr>
<td>Mishra et al.[26]</td>
<td>576 bits</td>
<td>736 bits</td>
<td>1312 bits</td>
</tr>
<tr>
<td>Amin et al.[28]</td>
<td>736 bits</td>
<td>896 bits</td>
<td>1632 bits</td>
</tr>
<tr>
<td>Ours</td>
<td>576 bits</td>
<td>736 bits</td>
<td>1312 bits</td>
</tr>
</tbody>
</table>

In **TABLE IV**, we summarize the communication costs of our scheme and other related schemes. We assumes that the length of the hash function output digest, nonce, user identity, Chebyshev chaotic map and timestamp is 160-bit. To achieve 1024-bit RSA level security, a 160-bit ECC key is employed. The length of key for symmetric encryption/decryption is 256-bit. From **TABLE IV**, we conclude that our proposed scheme is more efficient than Lee’s scheme [34], Xu et al.’s scheme [16] and Amin et al.’s scheme [28], and as efficient as
Mishra et al.’s scheme [26] in communication overhead. Although the communication overhead of our scheme is slightly higher than Mishra et al.’s [35], our scheme avoids using timestamps and can resist various attacks and provide more security properties. Therefore, the proposed scheme achieves a delicate balance between security and performance for TMIS in comparison with other related schemes.

VII. CONCLUSION

In this paper, we have demonstrated that Mishra et al.’s authentication scheme suffers from various attacks and fails to provide several security properties. And then, we have proposed a three-factor authenticated key agreement scheme by using chaotic map-based cryptography to address these problems. The proposed scheme realizes the protection of medical data transmitted in the open channel and provides privacy protection during the remote diagnosing process, which enables the patient to enjoy the secure and convenient healthcare through the TMIS. Security analysis has proved that the proposed scheme can resist various attacks, and performance analysis has shown that the proposed scheme achieves better performance in comparison with other related schemes. Thus, the proposed scheme is more suitable for practical applications in TMIS environments.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China [grant numbers 61303237, 61272469]; the Wuhan Scientific Research Program [grant number 2013010501010144]; China Postdoctoral Fund [grant number 2012194091]; the Fundamental Research Funds for the Central Universities [grant number 2013199037]; and Teaching Laboratory Open Funds of China University of Geosciences [grant number skj2014234].

REFERENCES

Liping Zhang received the Ph.D. degree in information security from Huazhong University of Science and Technology in 2009. She is an associate professor in information and network security at China University of Geosciences.

Her research interests include key management, VoIP, and network security. Dr Zhang has published over 30 research papers, most of which are refereed journal papers including IET journal papers indexed by SCI. Dr. Zhang is the principal grant holder of three externally funded research projects.

Shanyu Tang (A’08–M’08–SM’10) received the Ph.D. degree from Imperial College London in 1995. He is a Distinguished Professor in the School of Computer Science at China University of Geosciences. He is dedicated to adventurous research in fractal computing methods for covert communications, network security, and bio-informatics.

Dr. Tang is the principal grant holder of four externally funded research projects. He has contributed to 70 scientific publications—36 refereed journal papers including IEEE TRANSACTIONS and IEE/IET journal papers.

Shaohui Zhu received the BSc degree in information security from China University of Geosciences in 2013. He is currently a postgraduate research student in information security.

His research interests include communication security, VoIP, and network security.